首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2017年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
In the literature two common macroscopic evacuation planning approaches exist: The dynamic network flow approach and the Cell–Transmission–Based approach. Both approaches have advantages and disadvantages. Many efficient solution approaches for the dynamic network flow approach exist so that realistic problem instances can be considered. However, the consideration of (more) realistic aspects (eg, density dependent travel times) results in non‐linear model formulations. The Cell‐Transmission‐Based approach on the other hand considers realistic traffic phenomena like shock waves and traffic congestion, but this approach leads to long computational times for realistic problem instances. In this article, we combine the advantages of both approaches: We consider a Cell‐Transmission‐Based Evacuation Planning Model (CTEPM) and present a network flow formulation that is equivalent to the cell‐based model. Thus, the computational costs of the CTEPM are enormously reduced due to the reformulation and the detailed representation of the traffic flow dynamics is maintained. We investigate the impacts of various evacuation scenario parameters on the evacuation performance and on the computational times in a computational study including 90 realistic instances.  相似文献   
2.
This contribution acquaints the reader with a model for multilevel single-machine proportional lot sizing and scheduling problems (PLSPs) that appear in the scope of short-term production planning. It is one of the first articles that deals with dynamic capacitated multilevel lot sizing and scheduling, which is of great practical importance. The PLSP model refines well-known mixed-integer programming formulations for dynamic capacitated lot sizing and scheduling as, for instance, the DLSP or the CSLP. A special emphasis is given on a new method called demand shuffle to solve multilevel PLSP instances efficiently but suboptimally. Although the basic idea is very simple, it becomes clear that in the presence of precedence and capacity constraints many nontrivial details are to be concerned. Computational studies show that the presented approach decidedly improves recent results. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 319–340, 1997  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号